Serveur d'exploration SRAS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses.

Identifieur interne : 000C45 ( Main/Exploration ); précédent : 000C44; suivant : 000C46

Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses.

Auteurs : H. Lei [République populaire de Chine] ; Y. Li [République populaire de Chine] ; S. Xiao [République populaire de Chine] ; C-H Lin [États-Unis] ; S L Norris [États-Unis] ; D. Wei [République populaire de Chine] ; Z. Hu [République populaire de Chine] ; S. Ji [République populaire de Chine]

Source :

RBID : pubmed:29244221

Descripteurs français

English descriptors

Abstract

Identifying the exact transmission route(s) of infectious diseases in indoor environments is a crucial step in developing effective intervention strategies. In this study, we proposed a comparative analysis approach and built a model to simulate outbreaks of 3 different in-flight infections in a similar cabin environment, that is, influenza A H1N1, severe acute respiratory syndrome (SARS) coronavirus (CoV), and norovirus. The simulation results seemed to suggest that the close contact route was probably the most significant route (contributes 70%, 95% confidence interval [CI]: 67%-72%) in the in-flight transmission of influenza A H1N1 transmission; as a result, passengers within 2 rows of the index case had a significantly higher infection risk than others in the outbreak (relative risk [RR]: 13.4, 95% CI: 1.5-121.2, P = .019). For SARS CoV, the airborne, close contact, and fomite routes contributed 21% (95% CI: 19%-23%), 29% (95% CI: 27%-31%), and 50% (95% CI: 48%-53%), respectively. For norovirus, the simulation results suggested that the fomite route played the dominant role (contributes 85%, 95% CI: 83%-87%) in most cases; as a result, passengers in aisle seats had a significantly higher infection risk than others (RR: 9.5, 95% CI: 1.2-77.4, P = .022). This work highlighted a method for using observed outbreak data to analyze the roles of different infection transmission routes.

DOI: 10.1111/ina.12445
PubMed: 29244221


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses.</title>
<author>
<name sortKey="Lei, H" sort="Lei, H" uniqKey="Lei H" first="H" last="Lei">H. Lei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Y" sort="Li, Y" uniqKey="Li Y" first="Y" last="Li">Y. Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, S" sort="Xiao, S" uniqKey="Xiao S" first="S" last="Xiao">S. Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, C H" sort="Lin, C H" uniqKey="Lin C" first="C-H" last="Lin">C-H Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norris, S L" sort="Norris, S L" uniqKey="Norris S" first="S L" last="Norris">S L Norris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, D" sort="Wei, D" uniqKey="Wei D" first="D" last="Wei">D. Wei</name>
<affiliation wicri:level="3">
<nlm:affiliation>Boeing (China) Co. Ltd., Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Boeing (China) Co. Ltd., Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Z" sort="Hu, Z" uniqKey="Hu Z" first="Z" last="Hu">Z. Hu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ji, S" sort="Ji, S" uniqKey="Ji S" first="S" last="Ji">S. Ji</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29244221</idno>
<idno type="pmid">29244221</idno>
<idno type="doi">10.1111/ina.12445</idno>
<idno type="wicri:Area/PubMed/Corpus">000A44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000A44</idno>
<idno type="wicri:Area/PubMed/Curation">000A44</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000A44</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000972</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000972</idno>
<idno type="wicri:Area/Ncbi/Merge">002E86</idno>
<idno type="wicri:Area/Ncbi/Curation">002E86</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">002E86</idno>
<idno type="wicri:Area/Main/Merge">000C47</idno>
<idno type="wicri:Area/Main/Curation">000C45</idno>
<idno type="wicri:Area/Main/Exploration">000C45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses.</title>
<author>
<name sortKey="Lei, H" sort="Lei, H" uniqKey="Lei H" first="H" last="Lei">H. Lei</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Y" sort="Li, Y" uniqKey="Li Y" first="Y" last="Li">Y. Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xiao, S" sort="Xiao, S" uniqKey="Xiao S" first="S" last="Xiao">S. Xiao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong</wicri:regionArea>
<wicri:noRegion>Hong Kong</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lin, C H" sort="Lin, C H" uniqKey="Lin C" first="C-H" last="Lin">C-H Lin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norris, S L" sort="Norris, S L" uniqKey="Norris S" first="S L" last="Norris">S L Norris</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Control Systems, Boeing Commercial Airplanes, Everett, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, D" sort="Wei, D" uniqKey="Wei D" first="D" last="Wei">D. Wei</name>
<affiliation wicri:level="3">
<nlm:affiliation>Boeing (China) Co. Ltd., Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Boeing (China) Co. Ltd., Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hu, Z" sort="Hu, Z" uniqKey="Hu Z" first="Z" last="Hu">Z. Hu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ji, S" sort="Ji, S" uniqKey="Ji S" first="S" last="Ji">S. Ji</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Indoor air</title>
<idno type="eISSN">1600-0668</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air Pollution, Indoor (analysis)</term>
<term>Aircraft</term>
<term>Caliciviridae Infections (transmission)</term>
<term>Computer Simulation</term>
<term>Disease Outbreaks</term>
<term>Female</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza, Human (transmission)</term>
<term>Male</term>
<term>Norovirus</term>
<term>Risk</term>
<term>SARS Virus</term>
<term>Severe Acute Respiratory Syndrome (transmission)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Femelle</term>
<term>Flambées de maladies</term>
<term>Grippe humaine (transmission)</term>
<term>Humains</term>
<term>Infections à Caliciviridae (transmission)</term>
<term>Mâle</term>
<term>Norovirus</term>
<term>Pollution de l'air ambiant intérieur (analyse)</term>
<term>Risque</term>
<term>Simulation numérique</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Syndrome respiratoire aigu sévère (transmission)</term>
<term>Virus du SRAS</term>
<term>Véhicules de transport aérien</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Pollution de l'air ambiant intérieur</term>
</keywords>
<keywords scheme="MESH" qualifier="analysis" xml:lang="en">
<term>Air Pollution, Indoor</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="en">
<term>Caliciviridae Infections</term>
<term>Influenza, Human</term>
<term>Severe Acute Respiratory Syndrome</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aircraft</term>
<term>Computer Simulation</term>
<term>Disease Outbreaks</term>
<term>Female</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Male</term>
<term>Norovirus</term>
<term>Risk</term>
<term>SARS Virus</term>
</keywords>
<keywords scheme="MESH" qualifier="transmission" xml:lang="fr">
<term>Femelle</term>
<term>Flambées de maladies</term>
<term>Grippe humaine</term>
<term>Humains</term>
<term>Infections à Caliciviridae</term>
<term>Mâle</term>
<term>Norovirus</term>
<term>Risque</term>
<term>Simulation numérique</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Virus du SRAS</term>
<term>Véhicules de transport aérien</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Identifying the exact transmission route(s) of infectious diseases in indoor environments is a crucial step in developing effective intervention strategies. In this study, we proposed a comparative analysis approach and built a model to simulate outbreaks of 3 different in-flight infections in a similar cabin environment, that is, influenza A H1N1, severe acute respiratory syndrome (SARS) coronavirus (CoV), and norovirus. The simulation results seemed to suggest that the close contact route was probably the most significant route (contributes 70%, 95% confidence interval [CI]: 67%-72%) in the in-flight transmission of influenza A H1N1 transmission; as a result, passengers within 2 rows of the index case had a significantly higher infection risk than others in the outbreak (relative risk [RR]: 13.4, 95% CI: 1.5-121.2, P = .019). For SARS CoV, the airborne, close contact, and fomite routes contributed 21% (95% CI: 19%-23%), 29% (95% CI: 27%-31%), and 50% (95% CI: 48%-53%), respectively. For norovirus, the simulation results suggested that the fomite route played the dominant role (contributes 85%, 95% CI: 83%-87%) in most cases; as a result, passengers in aisle seats had a significantly higher infection risk than others (RR: 9.5, 95% CI: 1.2-77.4, P = .022). This work highlighted a method for using observed outbreak data to analyze the roles of different infection transmission routes.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lei, H" sort="Lei, H" uniqKey="Lei H" first="H" last="Lei">H. Lei</name>
</noRegion>
<name sortKey="Hu, Z" sort="Hu, Z" uniqKey="Hu Z" first="Z" last="Hu">Z. Hu</name>
<name sortKey="Ji, S" sort="Ji, S" uniqKey="Ji S" first="S" last="Ji">S. Ji</name>
<name sortKey="Li, Y" sort="Li, Y" uniqKey="Li Y" first="Y" last="Li">Y. Li</name>
<name sortKey="Wei, D" sort="Wei, D" uniqKey="Wei D" first="D" last="Wei">D. Wei</name>
<name sortKey="Xiao, S" sort="Xiao, S" uniqKey="Xiao S" first="S" last="Xiao">S. Xiao</name>
</country>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Lin, C H" sort="Lin, C H" uniqKey="Lin C" first="C-H" last="Lin">C-H Lin</name>
</region>
<name sortKey="Norris, S L" sort="Norris, S L" uniqKey="Norris S" first="S L" last="Norris">S L Norris</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/SrasV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C45 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C45 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    SrasV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29244221
   |texte=   Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29244221" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a SrasV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 28 14:49:16 2020. Site generation: Sat Mar 27 22:06:49 2021